• search hit 19 of 24
Back to Result List

Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds

  • The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter Cst,1 that is found not robust as the polynomial degree p increases. This is related to the H1 stability bound of the L2 projection onto polynomials of degree at most p and its growth Cst,1 ∝ (p + 1)1/2 as p → ∞. A similar estimate for the Galerkin projection holds with a p-robust constant Cst,2 and Cst,2 ≤ 2 for right-isosceles triangles. This paper utilizes the new inequality with the constant Cst,2 to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a p-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a prioriThe higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter Cst,1 that is found not robust as the polynomial degree p increases. This is related to the H1 stability bound of the L2 projection onto polynomials of degree at most p and its growth Cst,1 ∝ (p + 1)1/2 as p → ∞. A similar estimate for the Galerkin projection holds with a p-robust constant Cst,2 and Cst,2 ≤ 2 for right-isosceles triangles. This paper utilizes the new inequality with the constant Cst,2 to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a p-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a priori quasi-best approximation and improved L2 error estimates as well as a stabilization-free reliable and efficient a posteriori error control. The associated adaptive mesh-refining algorithm performs superior in computer benchmarks with striking numerical evidence for optimal higher empirical convergence rates.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Carsten Carstensen, Benedikt Gräßle, Ngoc Tien TranORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1131298
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113129
ISSN:0029-599XOPAC
ISSN:0945-3245OPAC
Parent Title (German):Numerische Mathematik
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/05/22
Volume:156
Issue:3
First Page:813
Last Page:851
DOI:https://doi.org/10.1007/s00211-024-01407-w
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)