• search hit 2 of 23
Back to Result List

Engineering a Cu‐Pd paddle‐wheel metal–organic framework for selective CO2 electroreduction

  • Optimizing the binding energy between the intermediate and the active site is a key factor for tuning catalytic product selectivity and activity in the electrochemical carbon dioxide reduction reaction. Copper active sites are known to reduce CO2 to hydrocarbons and oxygenates, but suffer from poor product selectivity due to the moderate binding energies of several of the reaction intermediates. Here, we report an ion exchange strategy to construct Cu−Pd paddle wheel dimers within Cu-based metal–organic frameworks (MOFs), [Cu3-xPdx(BTC)2] (BTC=benzentricarboxylate), without altering the overall MOF structural properties. Compared to the pristine Cu MOF ([Cu3(BTC)2], HKUST-1), the Cu−Pd MOF shifts CO2 electroreduction products from diverse chemical species to selective CO generation. In situ X-ray absorption fine structure analysis of the catalyst oxidation state and local geometry, combined with theoretical calculations, reveal that the incorporation of Pd within the Cu−Pd paddle wheelOptimizing the binding energy between the intermediate and the active site is a key factor for tuning catalytic product selectivity and activity in the electrochemical carbon dioxide reduction reaction. Copper active sites are known to reduce CO2 to hydrocarbons and oxygenates, but suffer from poor product selectivity due to the moderate binding energies of several of the reaction intermediates. Here, we report an ion exchange strategy to construct Cu−Pd paddle wheel dimers within Cu-based metal–organic frameworks (MOFs), [Cu3-xPdx(BTC)2] (BTC=benzentricarboxylate), without altering the overall MOF structural properties. Compared to the pristine Cu MOF ([Cu3(BTC)2], HKUST-1), the Cu−Pd MOF shifts CO2 electroreduction products from diverse chemical species to selective CO generation. In situ X-ray absorption fine structure analysis of the catalyst oxidation state and local geometry, combined with theoretical calculations, reveal that the incorporation of Pd within the Cu−Pd paddle wheel node structure of the MOF promotes adsorption of the key intermediate COOH* at the Cu site. This permits CO-selective catalytic mechanisms and thus advances our understanding of the interplay between structure and activity toward electrochemical CO2 reduction using molecular catalysts.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ruirui Zhang, Yan Liu, Pan Ding, Juanjuan Huang, Martin Dierolf, Shelly D. Kelly, Xinqi Qiu, Yishuo Chen, Mian Zahid Hussain, Weijin Li, Hana BunzenORCiDGND, Klaus Achterhold, Franz Pfeiffer, Ian D. Sharp, Julien Warnan, Roland A. Fischer
URN:urn:nbn:de:bvb:384-opus4-1179283
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117928
ISSN:1433-7851OPAC
ISSN:1521-3773OPAC
Parent Title (English):Angewandte Chemie International Edition
Publisher:Wiley
Place of publication:Hoboken, NJ
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/01/09
Volume:63
Issue:51
First Page:e202414600
DOI:https://doi.org/10.1002/anie.202414600
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Festkörperchemie
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 13 - Maßnahmen zum Klimaschutz
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)