• search hit 3 of 4
Back to Result List

High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling

  • In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling. We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance theIn this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling. We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance the explanatory power of the model. This study represents a proof of principle that detailed statistical analysis for quantitative dynamical modeling used in systems biology is feasible also in high-dimensional parameter spaces.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:S. Hug, Andreas RaueORCiDGND, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer, F. J. Theis
URN:urn:nbn:de:bvb:384-opus4-1132375
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113237
ISSN:0025-5564OPAC
Parent Title (English):Mathematical Biosciences
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2013
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:246
Issue:2
First Page:293
Last Page:304
DOI:https://doi.org/10.1016/j.mbs.2013.04.002
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Modellierung und Simulation biologischer Prozesse
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)