• search hit 3 of 121
Back to Result List

Pressure tuning of competing interactions on a honeycomb lattice

  • Exchange interactions are mediated via orbital overlaps across chemical bonds. Thus, modifying the bond angles by physical pressure or strain can tune the relative strength of competing interactions. Here we present a remarkable case of such tuning between the Heisenberg (J) and Kitaev (K) exchange, which respectively establish magnetically ordered and spin liquid phases on a honeycomb lattice. We observe a rapid suppression of the Néel temperature (TN) with pressure in Ag3LiRh2O6, a spin-1/2 honeycomb lattice with both J and K couplings. Using a combined analysis of x-ray data and first-principles calculations, we find that pressure modifies the bond angles in a way that increases the ∣K/J∣ ratio and thereby suppresses TN. Consistent with this picture, we observe a spontaneous onset of muon spin relaxation (μSR) oscillations below TN at low pressure, whereas in the high pressure phase, oscillations appear only when T < TN/2. Unlike other candidate Kitaev materials, Ag3LiRh2O6is tunedExchange interactions are mediated via orbital overlaps across chemical bonds. Thus, modifying the bond angles by physical pressure or strain can tune the relative strength of competing interactions. Here we present a remarkable case of such tuning between the Heisenberg (J) and Kitaev (K) exchange, which respectively establish magnetically ordered and spin liquid phases on a honeycomb lattice. We observe a rapid suppression of the Néel temperature (TN) with pressure in Ag3LiRh2O6, a spin-1/2 honeycomb lattice with both J and K couplings. Using a combined analysis of x-ray data and first-principles calculations, we find that pressure modifies the bond angles in a way that increases the ∣K/J∣ ratio and thereby suppresses TN. Consistent with this picture, we observe a spontaneous onset of muon spin relaxation (μSR) oscillations below TN at low pressure, whereas in the high pressure phase, oscillations appear only when T < TN/2. Unlike other candidate Kitaev materials, Ag3LiRh2O6is tuned toward a quantum critical point by pressure while avoiding a structural dimerization in the relevant pressure range.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Piyush Sakrikar, Bin Shen, Eduardo H. T. Poldi, Faranak Bahrami, Xiaodong Hu, Eric M. Kenney, Qiaochu Wang, Kyle W. Fruhling, Chennan Wang, Ritu Gupta, Rustem Khasanov, Hubertus Luetkens, Stuart A. Calder, Adam A. Aczel, Gilberto Fabbris, Russell J. Hemley, Kemp W. Plumb, Ying Ran, Philipp GegenwartORCiDGND, Alexander A. TsirlinORCiDGND, Daniel Haskel, Michael J. Graf, Fazel Tafti
URN:urn:nbn:de:bvb:384-opus4-1222258
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122225
ISSN:2041-1723OPAC
Parent Title (English):Nature Communications
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/23
Volume:16
Issue:1
First Page:4712
DOI:https://doi.org/10.1038/s41467-025-59897-7
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik VI
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)