Preconditioning for a Cahn–Hilliard–Navier–Stokes model for morphology formation in organic solar cells
- We present a model for the morphology evolution of printed organic solar cells, which occurs during the drying of a mixture of polymer, non-fullerene acceptor, and solvent. Our model uses a phase field approach coupled to a Navier–Stokes equation describing the macroscopic movement of the fluid. Additionally, we incorporate the evaporation process of the solvent using an Allen–Cahn equation. The model is discretized using a finite-element approach with a semi-implicit discretization in time. The resulting (non)linear systems are coupled and of large dimensionality. We present a preconditioned iterative scheme to solve them robustly with respect to changes in the discretization parameters. We illustrate that the preconditioned solver shows parameter-robust iteration numbers and that the model qualitatively captures the behavior of the film morphology during drying.
Author: | Pelin Çiloğlu, Carmen Tretmans, Roland Herzog, Jan-F. PietschmannORCiDGND, Martin Stoll |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1244509 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/124450 |
ISSN: | 1090-2716OPAC |
Parent Title (English): | Journal of Computational Physics |
Publisher: | Elsevier |
Place of publication: | Amsterdam |
Type: | Article |
Language: | English |
Date of Publication (online): | 2025/08/14 |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/08/18 |
Volume: | 540 |
First Page: | 114280 |
DOI: | https://doi.org/10.1016/j.jcp.2025.114280 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |