• search hit 11 of 40
Back to Result List

Large language model processing capabilities of ChatGPT 4.0 to generate molecular tumor board recommendations — a critical evaluation on real world data

  • Background Large language models (LLMs) like ChatGPT 4.0 hold promise for enhancing clinical decision-making in precision oncology, particularly within molecular tumor boards (MTBs). This study assesses ChatGPT 4.0’s performance in generating therapy recommendations for complex real-world cancer cases compared to expert human MTB (hMTB) teams. Methods We retrospectively analyzed 20 anonymized MTB cases from the Comprehensive Cancer Center Augsburg (CCCA), covering breast cancer (n = 3), glioblastoma (n = 3), colorectal cancer (n = 2), and rare tumors. ChatGPT 4.0 recommendations were evaluated against hMTB outputs using metrics including recommendation type (therapeutic/diagnostic), information density (IDM), consistency, quality (level of evidence [LoE]), and efficiency. Each case was prompted thrice to evaluate variability (Fleiss’ Kappa). Results ChatGPT 4.0 generated more therapeutic recommendations per case than hMTB (median 3 vs. 1, p = 0.005), with comparableBackground Large language models (LLMs) like ChatGPT 4.0 hold promise for enhancing clinical decision-making in precision oncology, particularly within molecular tumor boards (MTBs). This study assesses ChatGPT 4.0’s performance in generating therapy recommendations for complex real-world cancer cases compared to expert human MTB (hMTB) teams. Methods We retrospectively analyzed 20 anonymized MTB cases from the Comprehensive Cancer Center Augsburg (CCCA), covering breast cancer (n = 3), glioblastoma (n = 3), colorectal cancer (n = 2), and rare tumors. ChatGPT 4.0 recommendations were evaluated against hMTB outputs using metrics including recommendation type (therapeutic/diagnostic), information density (IDM), consistency, quality (level of evidence [LoE]), and efficiency. Each case was prompted thrice to evaluate variability (Fleiss’ Kappa). Results ChatGPT 4.0 generated more therapeutic recommendations per case than hMTB (median 3 vs. 1, p = 0.005), with comparable diagnostic suggestions (median 1 vs. 2, p = 0.501). Therapeutic scope from ChatGPT 4.0 included off-label and clinical trial options. IDM scores indicated similar content depth between ChatGPT 4.0 (median 0.67) and hMTB (median 0.75; p = 0.084). Moderate consistency was observed across replicate runs (median Fleiss’ Kappa=0.51). ChatGPT 4.0 occasionally utilized lower-level or preclinical evidence more frequently (p = 0.0019). Efficiency favored ChatGPT 4.0 significantly (median 15.2 vs. 34.7 minutes; p < 0.001). Conclusion Incorporating ChatGPT 4.0 into MTB workflows enhances efficiency and provides relevant recommendations, especially in guideline-supported cases. However, variability in evidence prioritization highlights the need for ongoing human oversight. A hybrid approach, integrating human expertise with LLM support, may optimize precision oncology decision-making.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maximilian Schmutz, Sebastian Sommer, Julia Sander, David Graumann, Johannes RafflerGND, Iñaki Soto-ReyORCiDGND, Seyedmostafa Sheikhalishahi, Lisa Schmidt, Leonhard Paul Unkelbach, Levent Ortak, Tina SchallerGND, Sebastian DintnerGND, Kathrin Hildebrand, Michaela KuhlenORCiDGND, Frank Jordan, Martin TrepelGND, Christian HinskeGND, Rainer ClausORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125429
ISSN:1083-7159OPAC
ISSN:1549-490XOPAC
Parent Title (English):The Oncologist
Publisher:Oxford University Press (OUP)
Place of publication:Oxford
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/24
DOI:https://doi.org/10.1093/oncolo/oyaf293
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Innere Medizin mit Schwerpunkt Hämatologie und Onkologie
Medizinische Fakultät / Lehrstuhl für Kinder- und Jugendmedizin
Medizinische Fakultät / Professur für personalisierte Tumormedizin und molekulare Onkologie
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)