• search hit 1 of 4
Back to Result List

Multidimensional Scaling and Genetic Algorithms: A Solution Approach to Avoid Local Minima

  • Multidimensional scaling is very common in exploratory data analysis. It is mainly used to represent sets of objects with respect to their proximities in a low dimensional Euclidean space. Widely used optimization algorithms try to improve the representation via shifting its coordinates in direction of the negative gradient of a corresponding fit function. Depending on the initial configuration, the chosen algorithm and its parameter settings there is a possibility for the algorithm to terminate in a local minimum. This article describes the combination of an evolutionary model with a non-metric gradient solution method to avoid this problem. Furthermore a simulation study compares the results of the evolutionary approach with one classic solution method.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefan Etschberger, Andreas HilbertGND
URN:urn:nbn:de:bvb:384-opus4-2371
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/292
Series (Serial Number):Arbeitspapiere zur Mathematischen Wirtschaftsforschung (181)
Publisher:Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Augsburg
Place of publication:Augsburg
Type:Working Paper
Language:English
Date of Publication (online):2006/07/31
Year of first Publication:2002
Publishing Institution:Universität Augsburg
Release Date:2006/07/31
GND-Keyword:Multidimensionale Skalierung; Genetischer Algorithmus
Page Number:21
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie
Dewey Decimal Classification:3 Sozialwissenschaften / 31 Statistiken / 310 Sammlungen allgemeiner Statistiken
Licence (German):Deutsches Urheberrecht