The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 43 of 142
Back to Result List

Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

  • Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate-related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACCConsistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate-related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System. We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between SCIAMACHY and GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT–SCIAMACHY (linear correlation coefficient r=0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT–TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY–TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (± 2 h, 10° x 10° around TCCON sites), i.e. the observed air masses are not exactly identical but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by also using data from other missions (e.g. OCO-2, GOSAT-2, CarbonSat) in the future.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:J. Heymann, M. Reuter, M. Hilker, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, A. Kuze, H. Suto, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, S. Kawakami, R. Kivi, I. Morino, C. Petri, C. Roehl, M. Schneider, V. Sherlock, Ralf SussmannORCiDGND, V. A. Velazco, T. Warneke, D. Wunch
URN:urn:nbn:de:bvb:384-opus4-1207038
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120703
ISSN:1867-8548OPAC
Parent Title (English):Atmospheric Measurement Techniques
Publisher:Copernicus
Place of publication:Göttingen
Type:Article
Language:English
Year of first Publication:2015
Publishing Institution:Universität Augsburg
Release Date:2025/03/28
Volume:8
Issue:7
First Page:2961
Last Page:2980
DOI:https://doi.org/10.5194/amt-8-2961-2015
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)