• search hit 3 of 34
Back to Result List

RTM-based downscaling of medium resolution soil moisture using Sentinel-1 data over agricultural fields

  • High temporal soil moisture at field scale resolution (10 m–100 m) is important for smart farming decisions. Although, medium and coarse resolution (1 km–50 km) soil moisture information is operationally available on a large scale, high resolution (field scale) datasets are not. This study propose a data assimilation approach to downscale medium resolution (1 km × 1 km) soil moisture information–of intense agriculturally cultivated areas–to field scale. For achieving high transferability of the proposed method, the used input data (Sentinel-1 VV backscatter, Sentinel-2 derived vegetation water content, literature values) can be provided systematically from global operational satellites. Microwave and optical data are used together as input data of a radiative transfer model to derive soil moisture information with high temporal and spatial resolution. The retrieval approach shows a mean ubRMSE for soil moisture estimates of all test fields (Munich-North-Isar test site, Bavaria,High temporal soil moisture at field scale resolution (10 m–100 m) is important for smart farming decisions. Although, medium and coarse resolution (1 km–50 km) soil moisture information is operationally available on a large scale, high resolution (field scale) datasets are not. This study propose a data assimilation approach to downscale medium resolution (1 km × 1 km) soil moisture information–of intense agriculturally cultivated areas–to field scale. For achieving high transferability of the proposed method, the used input data (Sentinel-1 VV backscatter, Sentinel-2 derived vegetation water content, literature values) can be provided systematically from global operational satellites. Microwave and optical data are used together as input data of a radiative transfer model to derive soil moisture information with high temporal and spatial resolution. The retrieval approach shows a mean ubRMSE for soil moisture estimates of all test fields (Munich-North-Isar test site, Bavaria, Germany) with 0.045 m 3 /m 3 and 0.037 m 3 /m 3 for 2017 and 2018. Furthermore, the retrieved soil moisture estimates cover a broad range of values from 0.05 m 3 /m 3 to 0.4 m 3 /m 3 . In addition, the temporal evolution of the soil moisture patterns are in line with precipitation events. Moreover, the drying behavior is matched as well. The proposed method showed that for the test area, high resolution soil moisture time series can be provided by only using remote sensing derived input data. In this way, this study is another step towards providing high spatio-temporal soil moisture information for precision farming purposes.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Weiß, Thomas JagdhuberORCiDGND, Thomas Ramsauer, Alexander Löw, Philip Marzahn
URN:urn:nbn:de:bvb:384-opus4-1156223
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115622
ISSN:1939-1404OPAC
ISSN:2151-1535OPAC
Parent Title (English):IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/10/01
Volume:17
First Page:15463
Last Page:15479
DOI:https://doi.org/10.1109/jstars.2024.3448625
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 2 - Kein Hunger
Dewey Decimal Classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)