• search hit 12 of 12
Back to Result List

Identification of salicylates in willow bark (Salix cortex) for targeting peripheral inflammation

  • Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2′-O-acetylsalicortin (1), 3′-O-acetylsalicortin (2), 2′-O-acetylsalicin (3), 2′,6′-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/orSalix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2′-O-acetylsalicortin (1), 3′-O-acetylsalicortin (2), 2′-O-acetylsalicin (3), 2′,6′-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kyriaki Antoniadou, Corinna Herz, Nguyen Phan Khoi Le, Verena Karolin Mittermeier-Kleßinger, Nadja Förster, Matthias Zander, Christian Ulrichs, Inga Mewis, Thomas Hofmann, Corinna Dawid, Evelyn LamyORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1157345
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115734
ISSN:1422-0067OPAC
Parent Title (English):International Journal of Molecular Sciences
Publisher:MDPI AG
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2024/10/11
Volume:22
Issue:20
First Page:11138
DOI:https://doi.org/10.3390/ijms222011138
Institutes:Medizinische Fakultät
Medizinische Fakultät / Professur für die Erforschung Umweltbezogener Wirkmechanismen auf die Gesundheit
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)