• search hit 61 of 3915
Back to Result List

Predicting media memorability from a multimodal late fusion of self-attention and LSTM models

  • This paper reports on the GTH-UPM team experience in the Predicting Media Memorability task at MediaEval 2020. Teams were requested to predict memorability scores at both short-term and long-term, understanding such score as a measure of whether a video was perdurable in a viewer’s memory or not. Our proposed system relies on a late fusion of the scores predicted by three sequential models, each trained over a different modality: video captions, aural embeddings and visual optical flow-based vectors. Whereas single-modality models show a low or zero Spearman correlation coefficient value, their combination considerably boosts performance over development data up to 0.2 in the short-term memorability prediction subtask and 0.19 in the long-term subtask. However, performance over test data drops to 0.016 and -0.041, respectively.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ricardo Kleinlein, Cristina Luna-JiménezORCiDGND, Zoraida Callejas, Fernando Fernández-Martínez
URN:urn:nbn:de:bvb:384-opus4-1226902
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122690
URL:https://nbn-resolving.org/urn:nbn:de:0074-2882-4
ISSN:1613-0073OPAC
Parent Title (English):MediaEval 2020 - Multimedia Benchmark Workshop 2020: Working Notes proceedings of the MediaEval 2020 Workshop, online, 14-15 December 2020
Publisher:CEUR-WS
Place of publication:Aachen
Editor:Steven Hicks, Debesh Jha, Konstantin Pogorelov, Alba García Seco De Herrera, Dmitry Bogdanov, Pierre-Etienne Martin, Stelios Andreadis, Minh-Son Dao, Zhuoran Liu, José Vargas-Quirós, Benjamin Kille, Martha Larson
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/06/04
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2025/06/05
First Page:61
Series:CEUR Workshop Proceedings ; 2882
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)