• search hit 8 of 857
Back to Result List

An approach to model self-imposed filter bubbles

  • When people are confronted with an overwhelming amount of information, they tend to filter out all the parts of the available information that do not fit their existing beliefs or opinions. Within this paper, we propose the first model to describe this “self-imposed filter bubble” (SFB) during argumentative information seeking. Based upon this model, argumentative dialogue systems (ADS) shall be able to learn and adapt their dialogue strategy to overcome this SFB in cooperation with the user.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Annalena AicherORCiDGND, Wolfgang Minker, Stefan Ultes
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122966
URL:https://www.semdial.org/anthology/papers/Z/Z22/Z22-4040/
ISSN:2308-2275OPAC
Parent Title (English):Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue, Technological University Dublin, Dublin, Ireland, August 22-24, 2022
Publisher:SemDial
Editor:Eleni Gregoromichelaki, Julian Hough, John D. Kelleher
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/06/21
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2025/06/25
First Page:269
Last Page:271
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz