An approach to model self-imposed filter bubbles
- When people are confronted with an overwhelming amount of information, they tend to filter out all the parts of the available information that do not fit their existing beliefs or opinions. Within this paper, we propose the first model to describe this “self-imposed filter bubble” (SFB) during argumentative information seeking. Based upon this model, argumentative dialogue systems (ADS) shall be able to learn and adapt their dialogue strategy to overcome this SFB in cooperation with the user.
Author: | Annalena AicherORCiDGND, Wolfgang Minker, Stefan Ultes |
---|---|
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/122966 |
URL: | https://www.semdial.org/anthology/papers/Z/Z22/Z22-4040/ |
ISSN: | 2308-2275OPAC |
Parent Title (English): | Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue, Technological University Dublin, Dublin, Ireland, August 22-24, 2022 |
Publisher: | SemDial |
Editor: | Eleni Gregoromichelaki, Julian Hough, John D. Kelleher |
Type: | Conference Proceeding |
Language: | English |
Date of Publication (online): | 2025/06/21 |
Year of first Publication: | 2022 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/06/25 |
First Page: | 269 |
Last Page: | 271 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz |