• search hit 3 of 16
Back to Result List

Polynomial chaos expansion: efficient evaluation and estimation of computational models

  • We apply Polynomial chaos expansion (PCE) to surrogate time-consuming repeated model evaluations for different parameter values. PCE represents a random variable, the quantity of interest (QoI), as a series expansion of other random variables, the inputs. Repeated evaluations become inexpensive by treating uncertain parameters of a model as inputs, and an element of a model’s solution, e.g., the policy function, second moments, or the posterior kernel as the QoI. We introduce the theory of PCE and apply it to the standard real business cycle model as an illustrative example. We analyze the convergence behavior of PCE for different QoIs and its efficiency when used for estimation. The results are promising both for local and global solution methods.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daniel FehrleGND, Christopher HeibergerGND, Johannes Huber
URN:urn:nbn:de:bvb:384-opus4-1188062
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118806
ISSN:0927-7099OPAC
ISSN:1572-9974OPAC
Parent Title (English):Computational Economics
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/02/03
Volume:65
Issue:2
First Page:1083
Last Page:1146
DOI:https://doi.org/10.1007/s10614-024-10772-5
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Volkswirtschaftslehre
Wirtschaftswissenschaftliche Fakultät / Institut für Volkswirtschaftslehre / Lehrstuhl für Empirische Makroökonomik (Maußner)
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)