Assessing model requirements for explainable AI: a template and exemplary case study
- In sociotechnical settings, human operators are increasingly assisted by decision support systems. By employing such systems, important properties of sociotechnical systems, such as self-adaptation and self-optimization, are expected to improve further. To be accepted by and engage efficiently with operators, decision support systems need to be able to provide explanations regarding the reasoning behind specific decisions. In this article, we propose the use of learning classifier systems (LCSs), a family of rule-based machine learning methods, to facilitate and highlight techniques to improve transparent decision-making. Furthermore, we present a novel approach to assessing application-specific explainability needs for the design of LCS models. For this, we propose an application-independent template of seven questions. We demonstrate the approach’s use in an interview-based case study for a manufacturing scenario. We find that the answers received do yield useful insights for aIn sociotechnical settings, human operators are increasingly assisted by decision support systems. By employing such systems, important properties of sociotechnical systems, such as self-adaptation and self-optimization, are expected to improve further. To be accepted by and engage efficiently with operators, decision support systems need to be able to provide explanations regarding the reasoning behind specific decisions. In this article, we propose the use of learning classifier systems (LCSs), a family of rule-based machine learning methods, to facilitate and highlight techniques to improve transparent decision-making. Furthermore, we present a novel approach to assessing application-specific explainability needs for the design of LCS models. For this, we propose an application-independent template of seven questions. We demonstrate the approach’s use in an interview-based case study for a manufacturing scenario. We find that the answers received do yield useful insights for a well-designed LCS model and requirements for stakeholders to engage actively with an intelligent agent.…
Author: | Michael HeiderORCiDGND, Helena StegherrORCiDGND, Richard Nordsieck, Jörg HähnerORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1097125 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/109712 |
ISSN: | 1064-5462OPAC |
ISSN: | 1530-9185OPAC |
Parent Title (English): | Artificial Life |
Publisher: | MIT Press |
Place of publication: | Cambridge, MA |
Type: | Article |
Language: | English |
Year of first Publication: | 2023 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/12/05 |
Tag: | Artificial Intelligence |
Volume: | 29 |
Issue: | 4 |
First Page: | 468 |
Last Page: | 486 |
DOI: | https://doi.org/10.1162/artl_a_00414 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Organic Computing | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | ![]() |