• search hit 6 of 62
Back to Result List

Size-biased diffusion limits and the inclusion process

  • We consider the inclusion process on the complete graph with vanishing diffusivity, which leads to condensation of particles in the thermodynamic limit. Describing particle configurations in terms of size-biased and appropriately scaled empirical measures of mass distribution, we establish convergence in law of the inclusion process to a measure-valued Markov process on the space of probability measures. In the case where the diffusivity vanishes like the inverse of the system size, the derived scaling limit is equivalent to the well known Poisson-Dirichlet diffusion, offering an alternative viewpoint on these well-established dynamics. Moreover, our novel size-biased approach provides a robust description of the dynamics, which covers all scaling regimes of the system parameters and yields a natural extension of the Poisson-Dirichlet diffusion to infinite mutation rate. We also discuss in detail connections to known results on related Fleming-Viot processes.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Paul Chleboun, Simon Gabriel, Stefan GrosskinskyORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1132210
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113221
ISSN:1083-6489OPAC
Parent Title (English):Electronic Journal of Probability
Publisher:Institute of Mathematical Statistics
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:29
First Page:65
DOI:https://doi.org/10.1214/24-ejp1119
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)