• search hit 11 of 101
Back to Result List

Federated learning for predictive analytics in weaning from mechanical ventilation

  • Mechanical ventilation is crucial for critically ill patients in ICUs, requiring accurate weaning and extubations timing for optimal outcomes. Current prediction models struggle with generalizability across datasets like MIMIC-IV and eICU-CRD. We propose a federated learning approach using XGBoost with bagging aggregation to improve weaning predictions while ensuring patient data privacy, compliant with GDPR and HIPAA. Using the OMOP Common Data Model, our method integrates machine learning techniques across three ICU databases, encompassing over 33,000 patients. Our model achieved robust performance with 77% AUC and 73% AUPRC. Planned pilot studies in Germany will further refine and validate our approach. This study demonstrates the potential of federated learning to enhance critical care by providing personalized, data-driven insights for ventilation management.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Seyedmostafa SheikhalishahiORCiD, Johanna SchwinnORCiD, Matthaeus MorhartORCiD, Mathias KasparORCiD, Ludwig Christian HinskeORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1223893
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122389
ISBN:9781643685960OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott
Type:Conference Proceeding
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/30
First Page:613
Last Page:614
Series:Studies in Health Technology and Informatics ; 327
DOI:https://doi.org/10.3233/shti250418
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)