• search hit 17 of 100
Back to Result List

Optimizing data extraction: harnessing RAG and LLMs for German medical documents

  • In the field of medical data analysis, converting unstructured text documents into a structured format suitable for further use is a significant challenge. This study introduces an automated local deployed data privacy secure pipeline that uses open-source Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) architecture to convert medical German language documents with sensitive health-related information into a structured format. Testing on a proprietary dataset of 800 unstructured original medical reports demonstrated an accuracy of up to 90% in data extraction of the pipeline compared to data extracted manually by physicians and medical students. This highlights the pipeline’s potential as a valuable tool for efficiently extracting relevant data from unstructured sources.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Yingding Wang, Simon Leutner, Michael Ingrisch, Christoph Klein, Ludwig Christian HinskeORCiDGND, Katharina Danhauser
URN:urn:nbn:de:bvb:384-opus4-1196449
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119644
ISBN:9781643685335OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024
Publisher:IOS Press
Place of publication:Amsterdam
Editor:John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/03/18
First Page:949
Last Page:950
Series:Studies in Health Technology and Informatics ; 316
DOI:https://doi.org/10.3233/shti240567
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)