Enhancing trust by a Keycloak-Flower integration for federated machine learning
- Since its introduction, federated learning (FL) has attracted a lot of attention in the medical field, but its actual application in healthcare organisations remains limited. Flower is a leading FL framework known for its good documentation and wide application. To close security gaps, we propose to integrate Keycloak with gRPC and Flower to improve identity and access management. We have developed a lightweight Python module that integrates both and also validates the client's code with the server before execution. The system has been tested in a simple prototype, but further work and security testing is required for a complex evaluation.
Author: | Matthaeus MorhartORCiD, Johanna SchwinnORCiD, Seyedmostafa SheikhalishahiORCiD, Michael Wellnhofer, Ludwig Christian HinskeORCiDGND, Mathias KasparORCiD |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1223902 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/122390 |
ISBN: | 9781643685960OPAC |
ISSN: | 0926-9630OPAC |
ISSN: | 1879-8365OPAC |
Parent Title (English): | Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025 |
Publisher: | IOS Press |
Place of publication: | Amsterdam |
Editor: | Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott |
Type: | Conference Proceeding |
Language: | English |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/05/30 |
First Page: | 613 |
Last Page: | 614 |
Series: | Studies in Health Technology and Informatics ; 327 |
DOI: | https://doi.org/10.3233/shti250406 |
Institutes: | Medizinische Fakultät |
Medizinische Fakultät / Universitätsklinikum | |
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support | |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
Licence (German): | ![]() |