• search hit 2 of 9
Back to Result List

Enhanced adhesion of mildly positively charged vesicles to endothelial cells with shed glycocalyx

  • The glycocalyx of endothelial cells is a dynamic, gel-like layer of glycoproteins, proteoglycans, and glycolipids that lines the luminal surface of blood vessels, playing a critical role in vascular permeability, mechanotransduction, and protection against shear stress. In this study, we investigated the in vitro adhesion of giant unilamellar vesicles (GUVs) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Specifically, we examined mildly positively charged DOTAP-DMPC (20:80) GUVs, based on positively charged DOTAP and neutral DMPC but exhibiting an overall mild positive charge in physiological buffer, and neutral DMPC GUVs, which show a negative charge in physiological buffer. Adhesion to human umbilical vein endothelial cells (HUVEC) was studied under three culture conditions: dynamic (intact glycocalyx), static (underdeveloped glycocalyx), and glycocalyx-shed (degraded glycocalyx). Vesicles were produced viaThe glycocalyx of endothelial cells is a dynamic, gel-like layer of glycoproteins, proteoglycans, and glycolipids that lines the luminal surface of blood vessels, playing a critical role in vascular permeability, mechanotransduction, and protection against shear stress. In this study, we investigated the in vitro adhesion of giant unilamellar vesicles (GUVs) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Specifically, we examined mildly positively charged DOTAP-DMPC (20:80) GUVs, based on positively charged DOTAP and neutral DMPC but exhibiting an overall mild positive charge in physiological buffer, and neutral DMPC GUVs, which show a negative charge in physiological buffer. Adhesion to human umbilical vein endothelial cells (HUVEC) was studied under three culture conditions: dynamic (intact glycocalyx), static (underdeveloped glycocalyx), and glycocalyx-shed (degraded glycocalyx). Vesicles were produced via electroformation, stained with Texas Red dye, and perfused over endothelial cells at a controlled velocity to simulate slow blood flow. Adhesion was tracked using fluorescence microscopy combined with cell segmentation techniques. Adhesion of DOTAP-DMPC vesicles was significantly enhanced─by approximately 3.5-fold─on glycocalyx-shed cells compared to cells with an intact glycocalyx. In contrast, DMPC vesicles showed no adhesion under any condition. Analysis of vesicle size distributions revealed no significant differences between adherent and nonadherent vesicles or between DOTAP-DMPC and DMPC vesicles. These findings provide insights into the role of the endothelial glycocalyx in regulating adhesion, with potential implications for tumor cell interactions with the endothelium and mechanisms underlying DOTAP-based transfection.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuel M. SirchORCiD, David Wörle, Marina G. HuberORCiD, Christoph WesterhausenORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1218903
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/121890
ISSN:2470-1343OPAC
Parent Title (English):ACS Omega
Publisher:American Chemical Society (ACS)
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/15
Volume:10
Issue:15
First Page:14858
Last Page:14865
DOI:https://doi.org/10.1021/acsomega.4c10054
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Medizinische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik I
Medizinische Fakultät / Professur für Physiologie (Westerhausen)
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)