• search hit 33 of 2507
Back to Result List

Personalized financial news recommendation algorithm based on ontology

  • To deal with the challenge of information overload, in this paper, we propose a financial news recommendation algorithm which help users find the articles that are interesting to read. To settle the ambiguity problem, a new presented OF-IDF method is employed to represent the unstructured text data in the form of key concepts, synonyms and synsets which are all stored in the domain ontology. For users, the recommendation algorithm build the profiles based on their behaviors to detect the genuine interests and predict current interests automatically and in real time by applying the thinking of relevance feedback. Finally, the experiment conducted on a financial news dataset demonstrates that the proposed algorithm significantly outperforms the performance of a traditional recommender.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Rui RenORCiDGND, Lingling Zhang, Limeng Cui, Bo Deng, Yong Shi
URN:urn:nbn:de:bvb:384-opus4-1216657
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/121665
ISSN:1877-0509OPAC
Parent Title (English):Procedia Computer Science
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2015
Publishing Institution:Universität Augsburg
Release Date:2025/05/02
Volume:55
First Page:843
Last Page:851
Note:
Information Technology and Quantitative Management (ITQM 2015)
DOI:https://doi.org/10.1016/j.procs.2015.07.151
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie / Lehrstuhl für Statistik
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)