Noemi Jiménez-Rojo, Suihan Feng, Johannes Morstein, Stefanie D. Pritzl, Antonino Asaro, Sergio López, Yun Xu, Takeshi Harayama, Nynke A. Vepřek, Christopher J. Arp, Martin Reynders, Alexander J. E. Novak, Evgeny Kanshin, Jan Lipfert, Beatrix Ueberheide, Manuel Muñiz, Theobald Lohmüller, Howard Riezman, Dirk Trauner
- The lipid composition of cellular membranes is highly dynamic and undergoes continuous remodeling, affecting the biophysical properties critical to biological function. Here, we introduce an optical approach to manipulate membrane viscosity based on an exogenous synthetic fatty acid with an azobenzene photoswitch, termed FAAzo4. Cells rapidly incorporate FAAzo4 into phosphatidylcholine and phosphatidylethanolamine in a concentration- and cell type-dependent manner. This generates photoswitchable PC and PE analogs, which are predominantly located in the endoplasmic reticulum. Irradiation causes a rapid photoisomerization that decreases membrane viscosity with high spatiotemporal precision. We use the resulting “PhotoCells” to study the impact of membrane viscosity on ER-to-Golgi transport and demonstrate that this two-step process has distinct membrane viscosity requirements. Our approach provides an unprecedented way of manipulating membrane biophysical properties directly in livingThe lipid composition of cellular membranes is highly dynamic and undergoes continuous remodeling, affecting the biophysical properties critical to biological function. Here, we introduce an optical approach to manipulate membrane viscosity based on an exogenous synthetic fatty acid with an azobenzene photoswitch, termed FAAzo4. Cells rapidly incorporate FAAzo4 into phosphatidylcholine and phosphatidylethanolamine in a concentration- and cell type-dependent manner. This generates photoswitchable PC and PE analogs, which are predominantly located in the endoplasmic reticulum. Irradiation causes a rapid photoisomerization that decreases membrane viscosity with high spatiotemporal precision. We use the resulting “PhotoCells” to study the impact of membrane viscosity on ER-to-Golgi transport and demonstrate that this two-step process has distinct membrane viscosity requirements. Our approach provides an unprecedented way of manipulating membrane biophysical properties directly in living cells and opens novel avenues to probe the effects of viscosity in a wide variety of biological processes.…

