• search hit 1 of 5382
Back to Result List

Optical control of membrane viscosity modulates ER-to-Golgi trafficking

  • The lipid composition of cellular membranes is highly dynamic and undergoes continuous remodeling, affecting the biophysical properties critical to biological function. Here, we introduce an optical approach to manipulate membrane viscosity based on an exogenous synthetic fatty acid with an azobenzene photoswitch, termed FAAzo4. Cells rapidly incorporate FAAzo4 into phosphatidylcholine and phosphatidylethanolamine in a concentration- and cell type-dependent manner. This generates photoswitchable PC and PE analogs, which are predominantly located in the endoplasmic reticulum. Irradiation causes a rapid photoisomerization that decreases membrane viscosity with high spatiotemporal precision. We use the resulting “PhotoCells” to study the impact of membrane viscosity on ER-to-Golgi transport and demonstrate that this two-step process has distinct membrane viscosity requirements. Our approach provides an unprecedented way of manipulating membrane biophysical properties directly in livingThe lipid composition of cellular membranes is highly dynamic and undergoes continuous remodeling, affecting the biophysical properties critical to biological function. Here, we introduce an optical approach to manipulate membrane viscosity based on an exogenous synthetic fatty acid with an azobenzene photoswitch, termed FAAzo4. Cells rapidly incorporate FAAzo4 into phosphatidylcholine and phosphatidylethanolamine in a concentration- and cell type-dependent manner. This generates photoswitchable PC and PE analogs, which are predominantly located in the endoplasmic reticulum. Irradiation causes a rapid photoisomerization that decreases membrane viscosity with high spatiotemporal precision. We use the resulting “PhotoCells” to study the impact of membrane viscosity on ER-to-Golgi transport and demonstrate that this two-step process has distinct membrane viscosity requirements. Our approach provides an unprecedented way of manipulating membrane biophysical properties directly in living cells and opens novel avenues to probe the effects of viscosity in a wide variety of biological processes.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Noemi Jiménez-Rojo, Suihan Feng, Johannes Morstein, Stefanie D. Pritzl, Antonino Asaro, Sergio López, Yun Xu, Takeshi Harayama, Nynke A. Vepřek, Christopher J. Arp, Martin Reynders, Alexander J. E. Novak, Evgeny Kanshin, Jan LipfertORCiDGND, Beatrix Ueberheide, Manuel Muñiz, Theobald Lohmüller, Howard Riezman, Dirk Trauner
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/124985
ISSN:2374-7943OPAC
ISSN:2374-7951OPAC
Parent Title (English):ACS Central Science
Publisher:American Chemical Society (ACS)
Place of publication:Washington, D.C.
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/09
DOI:https://doi.org/10.1021/acscentsci.5c00606
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)