Fixing Zeno gaps

  • In computer science fixpoints play a crucial role. Most often least and greatest fixpoints are sufficient. However there are situations where other ones are needed. In this paper we study, on an algebraic base, a special fixpoint of the function f(x) = a · x that describes infinite iteration of an element a. We show that the greatest fixpoint is too imprecise. Special problems arise if the iterated element contains the possibility of stepping on the spot (e.g. skip in a programming language) or if it allows Zeno behaviour. We present a construction for a fixpoint that captures these phenomena in a precise way. The theory is presented and motivated using an example from hybrid system analysis.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Peter HöfnerGND, Bernhard MöllerGND
URN:urn:nbn:de:bvb:384-opus4-389096
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/38909
Parent Title (English):Theoretical Computer Science
Type:Article
Language:English
Year of first Publication:2011
Publishing Institution:Universität Augsburg
Release Date:2018/07/23
Volume:412
Issue:28
First Page:3303
Last Page:3322
DOI:https://doi.org/10.1016/j.tcs.2011.03.018
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)