Magnetic resonances of multiferroic TbFe3(BO3)4

  • Low-energy magnetic excitations of the easy-axis antiferromagnet TbFe3(BO3)4 are investigated by far-infrared absorption and reflection spectroscopy in high magnetic fields up to 30 T. The observed field dependence of the resonance frequencies and the magnetization are reproduced by a mean-field spin model for magnetic fields applied both along and perpendicular to the easy axis. Based on this model we determined the full set of magnetic interactions, including Fe-Fe and Fe-Tb exchange interactions, single-ion anisotropy for Tb ions and g factors, which describe the ground-state spin texture and the low-energy spin excitations of TbFe3(BO3)4. Compared to earlier studies, we allow a small canting of the nearly Ising-type Tb moments to achieve a quantitative agreement with the magnetic susceptibility measurements. The additional high-energy magnetic resonance lines observed, besides the two resonances expected for a two-sublattice antiferromagnet, suggest a more complex six-sublatticeLow-energy magnetic excitations of the easy-axis antiferromagnet TbFe3(BO3)4 are investigated by far-infrared absorption and reflection spectroscopy in high magnetic fields up to 30 T. The observed field dependence of the resonance frequencies and the magnetization are reproduced by a mean-field spin model for magnetic fields applied both along and perpendicular to the easy axis. Based on this model we determined the full set of magnetic interactions, including Fe-Fe and Fe-Tb exchange interactions, single-ion anisotropy for Tb ions and g factors, which describe the ground-state spin texture and the low-energy spin excitations of TbFe3(BO3)4. Compared to earlier studies, we allow a small canting of the nearly Ising-type Tb moments to achieve a quantitative agreement with the magnetic susceptibility measurements. The additional high-energy magnetic resonance lines observed, besides the two resonances expected for a two-sublattice antiferromagnet, suggest a more complex six-sublattice magnetic ground state for TbFe3(BO3)4.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dávid Szaller, Vilmos Kocsis, Sándor Bordács, Titusz Fehér, Toomas Rõõm, Urmas Nagel, Hans Engelkamp, Kenya Ohgushi, István KézsmárkiORCiDGND
URN:urn:nbn:de:bvb:384-opus4-436294
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/43629
ISSN:2469-9950OPAC
ISSN:2469-9969OPAC
Parent Title (English):Physical Review B
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2018/11/16
Volume:95
Issue:2
First Page:024427
DOI:https://doi.org/10.1103/physrevb.95.024427
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik V
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht