Least reflexive points of relations

  • Assume a partially ordered set (S,≤) and a relation R on S. We consider various sets of conditions in order to determine whether they ensure the existence of a least reflexive point, that is, a least x such that xRx. This is a generalization of the problem of determining the least fixed point of a function and the conditions under which it exists. To motivate the investigation we first present a theorem by Cai and Paige giving conditions under which iterating R from the bottom element necessarily leads to a minimal reflexive point; the proof is by a concise relation-algebraic calculation. Then, we assume a complete lattice and exhibit sufficient conditions, depending on whether R is partial or not, for the existence of a least reflexive point. Further results concern the structure of the set of all reflexive points; among other results we give a sufficient condition that these form a complete lattice, thus generalizing Tarski’s classical result to the nondeterministic case.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jules DesharnaisGND, Bernhard MöllerGND
URN:urn:nbn:de:bvb:384-opus4-541340
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/54134
ISSN:1388-3690OPAC
ISSN:1573-0557OPAC
Parent Title (English):Higher-Order and Symbolic Computation
Publisher:Springer Nature
Type:Article
Language:English
Year of first Publication:2005
Publishing Institution:Universität Augsburg
Release Date:2019/05/20
Tag:Software; Computer Science Applications
Volume:18
Issue:1-2
First Page:51
Last Page:77
DOI:https://doi.org/10.1007/s10990-005-7006-5
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht