Kleene modules
- We propose axioms for Kleene modules (KM). These structures have a Kleene algebra and a Boolean algebra as sorts. The scalar products are mappings from the Kleene algebra and the Boolean algebra into the Boolean algebra that arise as algebraic abstractions of relational image and preimage operations. KM are the basis of algebraic variants of dynamic logics. We develop a calculus for KM and discuss their relation to Kleene algebra with domain and to dynamic and test algebras. As an example, we apply KM to the reachability analysis in digraphs.
Author: | Thomas Ehm, Bernhard MöllerGND, Georg StruthGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-592073 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/59207 |
ISBN: | 978-3-540-22145-6OPAC |
Parent Title (English): | Lecture Notes in Computer Science |
Publisher: | Springer |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2004 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2019/09/04 |
Volume: | 3051 |
First Page: | 112 |
Last Page: | 123 |
DOI: | https://doi.org/10.1007/978-3-540-24771-5_10 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | Deutsches Urheberrecht |