The influence of dipolar doping on charge injection and transport in small molecular organic semiconductors

  • The present work investigates the effect of dipolar doping on charge injection and charge carrier dynamics in organic semiconducting thin films. In this context, the term dipolar doping refers to the dilution or doping of a non-polar matrix molecule with a polar guest. For this purpose, the hole-conductors N,N ’-Di(1-naphthyl)-N,N ’-diphenyl-(1,1’-biphenyl)-4,4’-diamine (NPB) and 4,4-N,N ’-Dicarbazole-1,1’-biphenyl (CBP) will serve as the host molecules. Dopants include Tris-(8-hydroxyquinoline)aluminum (Alq3) and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene. The main focus, however, is on the system NPB:Alq3, which has also been studied extensively in the past [1–3]. In general, doping of (organic) semiconductors is a well known concept to tune conductivity [4] or optimize emitting properties of OLEDs [5]. The specific effect of doping with polar species, however, was not thoroughly investigated so far, although many guest molecules are indeed polar [6]. BecauseThe present work investigates the effect of dipolar doping on charge injection and charge carrier dynamics in organic semiconducting thin films. In this context, the term dipolar doping refers to the dilution or doping of a non-polar matrix molecule with a polar guest. For this purpose, the hole-conductors N,N ’-Di(1-naphthyl)-N,N ’-diphenyl-(1,1’-biphenyl)-4,4’-diamine (NPB) and 4,4-N,N ’-Dicarbazole-1,1’-biphenyl (CBP) will serve as the host molecules. Dopants include Tris-(8-hydroxyquinoline)aluminum (Alq3) and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene. The main focus, however, is on the system NPB:Alq3, which has also been studied extensively in the past [1–3]. In general, doping of (organic) semiconductors is a well known concept to tune conductivity [4] or optimize emitting properties of OLEDs [5]. The specific effect of doping with polar species, however, was not thoroughly investigated so far, although many guest molecules are indeed polar [6]. Because organic molecules are extended objects, their orientation with respect to the substrate surface [7], other molecules in the film [8] or e.g. the direction of light output from OLEDs [9] plays a crucial role in device performance. The key figure of polar molecules in this regard is their permanent dipole moment, arising from the non-uniform charge distribution on the molecule. If this dipole moment does not orient perfectly isotropic, it will lead to the build-up of a giant surface potential (GSP) and thus to a macroscopic dielectric polarization of the organic film. Despite this being a known fact [1, 7, 10], the implications of such high potentials on charge transport and injection within and into an organic layer stack have only been studied recently [3, 7, 11]. Dipolar doping now allows to introduce and tune the GSP in a former unpolar organic material [2]. The concentration dependence of the magnitude of the GSP in dipolar doped systems is the first major part of this work. Additionally, dipolar doping can be utilized to create hole conducting films that exhibit a GSP, which allow to study the impact of film polarization also in the hole conducting layer (HTL) of an OLED. In neat film, a GSP was previously seen mostly for electron conductors [6, 12]. Therefor, the prototypical, hole conducting mixture NPB:Alq3 is investigated at different doping concentrations and with varied substrate material with respect to hole injection and charge transport. The mixtures are studied in single-layer, monopolar devices with only the HTL present, as well as bilayer OLEDs with Alq 3 -doped NPB as HTL and neat Alq3 as electron transport layer, respectively. The latter are treated as metal insulator semiconductor (MIS) structures following and applying our recently developed method of charge extraction by linearly increasing voltage (CELIV) on polar OLEDs [13,14]. Furthermore, ultraviolet photoelectron spectroscopy allows to compare the electrical observations with the energy alignment between contact and doped NPB. For all device types, an optimum in device performance and carrier injection for moderate doping concentrations of about 5% is found. By comparing all different methods with a focus on charge injection barriers, a complex relationship of carrier transport, substrate workfunction, modified injection and the effect of polarization is found. This effectively manipulates charge carrier injection across the metal-organic interface and charge transport in the device.show moreshow less
  • Die vorliegende Arbeit befasst sich mit den Auswirkungen von polarer Dotierung auf Ladungsträgertransport und -injektion in organischen Halbleitern. „Polare Dotierung“ bezieht sich hierbei auf das Verdünnen oder Dotieren einer unpolaren Matrix aus organischen Molekülen mittels polaren Gast-Molekülen. Für diesen Zweck dienen die organischen Lochleiter N,N ’-Di(1-Naphthyl)-N,N ’-Diphenyl-(1,1’-Biphenyl)-4,4’-Diamin (NPB) und 4,4-N,N ’-Dicarbazole-1,1’-Biphenyl (CBP) als Matrix. Dotiert werden sie mit Tris-(8-Hydroxyquinolin) Aluminium (Alq3) und 1,3-bis[2-(4-tert- butylphenyl)-1,3,4-oxadiazo-5-yl]Benzen (OXD-7). Der Fokus dieser Arbeit liegt allerdings auf dem System NPB:Alq3, welches auch vorher bereits gründlich untersucht wurde [1–3]. Im Allgemeinen ist die Dotierung von (organischen) Halbleitern eine etablierte, zentrale Methode zur Optimierung der Leitfähigkeit [4] oder der Emittereigenschaften von organischen Leuchtdioden [5]. Die Folgen einer Dotierung mit polaren Molekülen imDie vorliegende Arbeit befasst sich mit den Auswirkungen von polarer Dotierung auf Ladungsträgertransport und -injektion in organischen Halbleitern. „Polare Dotierung“ bezieht sich hierbei auf das Verdünnen oder Dotieren einer unpolaren Matrix aus organischen Molekülen mittels polaren Gast-Molekülen. Für diesen Zweck dienen die organischen Lochleiter N,N ’-Di(1-Naphthyl)-N,N ’-Diphenyl-(1,1’-Biphenyl)-4,4’-Diamin (NPB) und 4,4-N,N ’-Dicarbazole-1,1’-Biphenyl (CBP) als Matrix. Dotiert werden sie mit Tris-(8-Hydroxyquinolin) Aluminium (Alq3) und 1,3-bis[2-(4-tert- butylphenyl)-1,3,4-oxadiazo-5-yl]Benzen (OXD-7). Der Fokus dieser Arbeit liegt allerdings auf dem System NPB:Alq3, welches auch vorher bereits gründlich untersucht wurde [1–3]. Im Allgemeinen ist die Dotierung von (organischen) Halbleitern eine etablierte, zentrale Methode zur Optimierung der Leitfähigkeit [4] oder der Emittereigenschaften von organischen Leuchtdioden [5]. Die Folgen einer Dotierung mit polaren Molekülen im Speziellen wurde allerdings bisher noch nicht systematisch untersucht, obwohl viele häufig verwendete Dotanden durchaus polare Moleküle sind [6]. Organische Moleküle sind ausgedehnte Objekte mit komplexen Formen, deren Orientierung zur Substratoberfläche [7], zu anderen Molekülen in der Schicht [8] oder auch zum Emissionsvektor einer OLED [9] einen großen Einfluss auf die Effizienz des Bauteils hat. Die wichtigste Eigenschaft von polaren Molekülen ist in diesem Zusammenhang ihr permanentes Dipolmoment, das sich auf eine ungleichmäßige Verteilung der Elektronendichte im Molekül zurückführen lässt. Falls sich das Dipolmoment nicht vollständig isotrop orientiert, hat es ein makroskopisches Oberflächenpotential (engl. giant surface potential, GSP) bzw. eine dielektrische Polarisation der gesamten Dünnschicht zur Folge. Die Existenz des GSP ist bereits seit einiger Zeit bekannt [1, 7, 10]. Seine Auswirkungen auf den Ladungstransport bzw. -injektion in Bezug auf organische Halbleiter werden erst seit kurzem häufiger untersucht [3,7,11]. Das Konzept der polaren Dotierung erlaubt nun, ein GSP in ursprünglich unpolare organische Matrizen einzubauen [2]. Mittels Dotierung lassen sich auch polare Lochleiter herstellen, die im weiteren Verlauf der Arbeit eine Untersuchung der Auswirkungen des GSP auf die Lochleiterschicht in einer OLED erlauben. In undotierten Schichten wurde ein GSP bisher hauptsächlich in Elektronenleitern beobachtet [6, 12]. Exemplarisch wird dazu das Mischsystem NPB:Alq3 in verschiedenen Konzentrationen und auf verschiedenen Substraten in Bezug auf Lochinjektion und Lochtransport näher untersucht. Es werden sowohl monopolare Bauteile, die ausschließlich Lochtransport aufweisen, als auch vollständige OLEDs verwendet. Bei OLEDs kommt dabei eine im Laufe dieser Arbeit mit entwickelte neue Methode zum Einsatz, die diese OLEDs wie sog. Metall-Isolator-Halbleiter-Dioden (engl. metalinsulator-semiconductor, MIS) behandelt und Rückschlüsse auf die Energiebarriere für Ladungsinjektion erlaubt [13, 14]. Des Weiteren stehen Ergebnisse aus der ultravioletten Photoelektronenspektroskopie zur Verfügung, die einen Vergleich mit der Ausrichtung der Energieniveaus von NPB am Kontakt ermöglichen. Mittels des Vergleichs verschiedener Messmethoden im Bezug auf die Injektionseigenschaften kann der Effekt des GSP auf verschiedene Parameter im Bauteil nachgewiesen werden, deren Zusammenspiel in sämtlichen Bauteiltypen zu einem Optimum bei moderaten Dotierkonzentrationen von ca. 5% führt.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Johann Ludwig HofmannORCiD
URN:urn:nbn:de:bvb:384-opus4-783156
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/78315
Advisor:Wolfgang Brütting
Type:Doctoral Thesis
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Date of final exam:2020/07/08
Release Date:2020/10/07
Tag:OLED; injection barrier; organic electronics; molecular orientation; polar molecule
GND-Keyword:Organisches Halbleiterbauelement; Organischer Halbleiter; Orientiertes Molekül; Impedanzmessung; OLED
Pagenumber:243
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik IV
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht