An online robot collision detection and identification scheme by supervised learning and Bayesian decision theory

Download full text files

  • 88170.pdfeng
    (1199KB)

    Postprint. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Zengjie Zhang, Kun Qian, Björn SchullerORCiDGND, Dirk Wollherr
URN:urn:nbn:de:bvb:384-opus4-881702
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/88170
ISSN:1545-5955OPAC
ISSN:1558-3783OPAC
Parent Title (English):IEEE Transactions on Automation Science and Engineering
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2021/08/03
Tag:Control and Systems Engineering; Electrical and Electronic Engineering
Volume:18
Issue:3
First Page:1144
Last Page:1156
DOI:https://doi.org/10.1109/tase.2020.2997094
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht