PermeabilityNets: comparing neural network architectures on a sequence-to-instance task in CFRP manufacturing

  • Carbon fiber reinforced polymers (CFRP) offer highly desirable properties such as weight-specific strength and stiffness. Liquid composite moulding (LCM) processes are prominent, economically efficient, out-of-autoclave manufacturing techniques and, in particular, resin transfer moulding (RTM), allows for a high level of automation. There, fibrous preforms are impregnated by a viscous polymer matrix in a closed mould. Impregnation quality is of crucial importance for the final part quality and is dominated by preform permeability. We propose to learn a map of permeability deviations based on a sequence of camera images acquired in flow experiments. Several ML models are investigated for this task, among which ConvLSTM networks achieve an accuracy of up to 96.56%, showing better performance than the Transformer or pure CNNs. Finally, we demonstrate that models, trained purely on simulated data, achieve qualitatively good results on real data.

Download full text files

  • 100037.pdfeng
    (298KB)

    Postprint. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Simon StieberORCiDGND, Niklas SchroterORCiDGND, Ewald Fauster, Alexander SchiendorferORCiDGND, Wolfgang ReifORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1000378
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/100037
ISBN:978-1-6654-4338-8OPAC
Parent Title (English):2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13-16 December 2021
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:M. Arif Wani, Ishwar Sethi, Weisong Shi, Guangzhi Qu, Daniela Stan Raicu, Ruoming Jin
Type:Conference Proceeding
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2022/12/08
First Page:694
Last Page:697
DOI:https://doi.org/10.1109/icmla52953.2021.00116
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Lehrstuhl für Softwaretechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht