deepSELF: an open source deep self end-to-end learning framework
- We introduce an open-source toolkit, i.e., the deep Self End-to-end Learning Framework (deepSELF), as a toolkit of deep self end-to-end learning framework for multi-modal signals. To the best of our knowledge, it is the first public toolkit assembling a series of state-of-the-art deep learning technologies. Highlights of the proposed deepSELF toolkit include: First, it can be used to analyse a variety of multi-modal signals, including images, audio, and single or multi-channel sensor data. Second, we provide multiple options for pre-processing, e.g., filtering, or spectrum image generation by Fourier or wavelet transformation. Third, plenty of topologies in terms of NN, 1D/2D/3D CNN, and RNN/LSTM/GRU can be customised and a series of pretrained 2D CNN models, e.g., AlexNet, VGGNet, ResNet can be used easily. Last but not least, above these features, deepSELF can be flexibly used not only as a single model but also as a fusion of such.
| Author: | Tomoya Koike, Kun Qian, Björn W. SchullerORCiDGND, Yoshiharu Yamamoto |
|---|---|
| URN: | urn:nbn:de:bvb:384-opus4-917018 |
| Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/91701 |
| Parent Title (English): | arXiv |
| Type: | Preprint |
| Language: | English |
| Date of Publication (online): | 2022/01/05 |
| Year of first Publication: | 2020 |
| Publishing Institution: | Universität Augsburg |
| Release Date: | 2022/01/28 |
| First Page: | arXiv:2005.06993v1 |
| DOI: | https://doi.org/10.48550/arXiv.2005.06993 |
| Institutes: | Fakultät für Angewandte Informatik |
| Fakultät für Angewandte Informatik / Institut für Informatik | |
| Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing | |
| Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
| Licence (German): | Deutsches Urheberrecht |



