deepSELF: an open source deep self end-to-end learning framework

  • We introduce an open-source toolkit, i.e., the deep Self End-to-end Learning Framework (deepSELF), as a toolkit of deep self end-to-end learning framework for multi-modal signals. To the best of our knowledge, it is the first public toolkit assembling a series of state-of-the-art deep learning technologies. Highlights of the proposed deepSELF toolkit include: First, it can be used to analyse a variety of multi-modal signals, including images, audio, and single or multi-channel sensor data. Second, we provide multiple options for pre-processing, e.g., filtering, or spectrum image generation by Fourier or wavelet transformation. Third, plenty of topologies in terms of NN, 1D/2D/3D CNN, and RNN/LSTM/GRU can be customised and a series of pretrained 2D CNN models, e.g., AlexNet, VGGNet, ResNet can be used easily. Last but not least, above these features, deepSELF can be flexibly used not only as a single model but also as a fusion of such.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tomoya Koike, Kun Qian, Björn W. SchullerORCiDGND, Yoshiharu Yamamoto
URN:urn:nbn:de:bvb:384-opus4-917018
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91701
Parent Title (English):arXiv
Type:Preprint
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2022/01/28
First Page:arXiv:2005.06993v1
DOI:https://doi.org/10.48550/arXiv.2005.06993
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht