Coupled-cluster in real space: CC2 correlation and excitation energies using multiresolution analysis

  • In this work algorithms for the computation of electronic correlation and excitation energies with the Coupled-Cluster method on adaptive grids are developed and implemented. The corresponding functions and operators are adaptively represented with multiresolution analysis allowing a basis-set independent description with controlled numerical accuracy. Equations for the coupled-cluster model are reformulated in a generalized framework independent of virtual orbitals and global basis-sets. For this, the amplitude weighted excitations into virtuals are replaced by excitations into n-electron functions which are determined by projected equations in the n-electron position space. The resulting equations can be represented diagrammatically analogous to basis-set dependent approaches with slightly adjusted rules of interpretation. Due to the singular Coulomb potential, the working equations are regularized with an explicitly correlated ansatz. Coupled-cluster singles with approximate doublesIn this work algorithms for the computation of electronic correlation and excitation energies with the Coupled-Cluster method on adaptive grids are developed and implemented. The corresponding functions and operators are adaptively represented with multiresolution analysis allowing a basis-set independent description with controlled numerical accuracy. Equations for the coupled-cluster model are reformulated in a generalized framework independent of virtual orbitals and global basis-sets. For this, the amplitude weighted excitations into virtuals are replaced by excitations into n-electron functions which are determined by projected equations in the n-electron position space. The resulting equations can be represented diagrammatically analogous to basis-set dependent approaches with slightly adjusted rules of interpretation. Due to the singular Coulomb potential, the working equations are regularized with an explicitly correlated ansatz. Coupled-cluster singles with approximate doubles (CC2) and similar models are implemented for closed-shell systems and in regularized form into the MADNESS library (a general library for the representation of functions and operators with multiresolution analysis). With the presented approach electronic CC2 pair-correlation energies and excitation energies can be computed with definite numerical accuracy and without dependence on global basis sets, which is verified on small molecules.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jakob S. KottmannORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1019133
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/101913
Publisher:Humboldt-Universität Berlin
Place of publication:Berlin
Type:Book
Language:English
Year of first Publication:2018
Publishing Institution:Universität Augsburg
Release Date:2023/02/14
Pagenumber:95
Note:
Dissertation, Humboldt-Universität Berlin, 2018
DOI:https://doi.org/10.18452/19357
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Quantenalgorithmik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Sonstige Open-Access-Lizenz