- A current goal for microactuators is to extend their usually small working ranges, which typically result from mechanical connections and restoring forces imposed by cantilevers. In order to overcome this, we present a bistable levitation setup to realise free vertical motion of a magnetic proof mass. By superimposing permanent magnetic fields, we imprint two equilibrium positions, namely on the ground plate and levitating at a predefined height. Energy-efficient switching between both resting positions is achieved by the cooperation of a piezoelectric stack actuator, initially accelerating the proof mass, and subsequent electromagnetic control. A trade-off between robust equilibrium positions and energy-efficient transitions is found by simultaneously optimising the controller and design parameters in a co-design. A flatness-based controller is then proposed for tracking the obtained trajectories. Simulation results demonstrate the effectiveness of the combined optimisation.