Pluronic® F-68 enhances the nanoparticle-cell interaction [Abstract]

  • Nowadays, the various surfactants find wide application in pharmaceutical industry. The nanoparticle preparation process by emulsion techniques essentially requires a surfactant, most commonly Pluronic® F-68 [1]. This non-ionic tenside influences cell physiology and was tested in clinical trial for the treatment of sickle cell disease [2] and myocardial infarction [3]. Out of these reasons, even residual tenside in nanoparticle preparations might influence the cells as well as their interaction with the colloidal carriers. At this, Caco-2 single cells were incubated with fluorescent polystyrene nanoparticles, in presence of increasing amounts of Pluronic® F-68 and cell-associated nanoparticles were detected by flow cytometry. Independent from incubation temperature, the cell-associated fraction of nanoparticles concurrently increased with the tenside concentration. Ongoing from micropipette aspiration experiments this effect could be attributed to an increase of membrane stiffness ofNowadays, the various surfactants find wide application in pharmaceutical industry. The nanoparticle preparation process by emulsion techniques essentially requires a surfactant, most commonly Pluronic® F-68 [1]. This non-ionic tenside influences cell physiology and was tested in clinical trial for the treatment of sickle cell disease [2] and myocardial infarction [3]. Out of these reasons, even residual tenside in nanoparticle preparations might influence the cells as well as their interaction with the colloidal carriers. At this, Caco-2 single cells were incubated with fluorescent polystyrene nanoparticles, in presence of increasing amounts of Pluronic® F-68 and cell-associated nanoparticles were detected by flow cytometry. Independent from incubation temperature, the cell-associated fraction of nanoparticles concurrently increased with the tenside concentration. Ongoing from micropipette aspiration experiments this effect could be attributed to an increase of membrane stiffness of Caco-2 cells in presence of Pluronic® F-68. Furthermore, the toxicity assay revealed that viability of the cells remained unaffected at any concentration of Pluronic® F-68.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:V. Kerleta, I. Andrlik, Matthias F. Schneider, T. Franke, M. Wirth, F. Gabor
URN:urn:nbn:de:bvb:384-opus4-1029281
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/102928
ISSN:0036-8709OPAC
Parent Title (English):Scientia Pharmaceutica
Publisher:MDPI AG
Type:Article
Language:English
Year of first Publication:2009
Publishing Institution:Universität Augsburg
Release Date:2023/03/17
Tag:Pharmaceutical Science
Volume:77
Issue:1
First Page:179
DOI:https://doi.org/10.3797/scipharm.oephg.21.sl-12
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)