Electric-field control and noise protection of the flopping-mode spin qubit

  • We propose and analyze a “flopping-mode” mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single-dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double- to the single-dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second-order sweet spot with reduced sensitivity to charge fluctuations.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mónica BenitoORCiDGND, Xanthe Croot, Christoph Adelsberger, Stefan Putz, Xiao Mi, Jason R. Petta, Guido Burkard
URN:urn:nbn:de:bvb:384-opus4-1042771
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/104277
ISSN:2469-9950OPAC
Parent Title (English):Physical Review B
Publisher:American Physical Society (APS)
Place of publication:College Park, MD
Type:Article
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Release Date:2023/05/09
Volume:100
First Page:125430
DOI:https://doi.org/10.1103/PhysRevB.100.125430
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Professur für Quantencomputing und Quantengeräte
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht