Towards automated COVID-19 presence and severity classification

  • COVID-19 presence classification and severity prediction via (3D) thorax computed tomography scans have become important tasks in recent times. Especially for capacity planning of intensive care units, predicting the future severity of a COVID-19 patient is crucial. The presented approach follows state-of-theart techniques to aid medical professionals in these situations. It comprises an ensemble learning strategy via 5-fold cross-validation that includes transfer learning and combines pre-trained 3D-versions of ResNet34 and DenseNet121 for COVID19 classification and severity prediction respectively. Further, domain-specific preprocessing was applied to optimize model performance. In addition, medical information like the infection-lung-ratio, patient age, and sex were included. The presented model achieves an AUC of 79.0% to predict COVID-19 severity, and 83.7% AUC to classify the presence of an infection, which is comparable with other currently popular methods. This approach isCOVID-19 presence classification and severity prediction via (3D) thorax computed tomography scans have become important tasks in recent times. Especially for capacity planning of intensive care units, predicting the future severity of a COVID-19 patient is crucial. The presented approach follows state-of-theart techniques to aid medical professionals in these situations. It comprises an ensemble learning strategy via 5-fold cross-validation that includes transfer learning and combines pre-trained 3D-versions of ResNet34 and DenseNet121 for COVID19 classification and severity prediction respectively. Further, domain-specific preprocessing was applied to optimize model performance. In addition, medical information like the infection-lung-ratio, patient age, and sex were included. The presented model achieves an AUC of 79.0% to predict COVID-19 severity, and 83.7% AUC to classify the presence of an infection, which is comparable with other currently popular methods. This approach is implemented using the AUCMEDI framework and relies on well-known network architectures to ensure robustness and reproducibility.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dominik MuellerORCiDGND, Silvan MertesORCiDGND, Niklas SchroeterORCiDGND, Fabio HellmannORCiDGND, Miriam EliaORCiDGND, Bernhard BauerORCiDGND, Wolfgang ReifORCiDGND, Elisabeth AndréORCiDGND, Frank KramerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1045374
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/104537
ISBN:9781643683881OPAC
ISBN:9781643683898OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Caring is sharing – exploiting the value in data for health and innovation
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Maria Hägglund, Madeleine Blusi, Stefano Bonacina, Lina Nilsson, Inge Cort Madsen, Sylvia Pelayo, Anne Moen, Arriel Benis, Lars Lindsköld, Parisis Gallos
Type:Part of a Book
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/05/24
First Page:917
Last Page:921
Series:Studies in Health Technology and Informatics ; 302
DOI:https://doi.org/10.3233/shti230309
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Professur Softwaremethodik für verteilte Systeme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)