Higher-order block-structured hex meshing of tubular structures

  • Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of computational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements, significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy. To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface mesh.Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of computational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements, significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy. To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface mesh. Grading may be induced to obtain tailored refinement, thus resolving, e.g., boundary layers. The volumetric meshing is then performed via transfinite mappings. The resulting meshes are of arbitrary order, their elements are of good quality, while the spatial resolution may be as coarse as needed, greatly reducing computing time. Their suitability for practical applications is showcased by a simulation of physiological blood flow modelled by a generalised Newtonian fluid in the human aorta.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Domagoj Bošnjak, Antonio Pepe, Richard SchussnigORCiDGND, Dieter Schmalstieg, Thomas-Peter Fries
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/105077
ISSN:0177-0667OPAC
ISSN:1435-5663OPAC
Parent Title (English):Engineering with Computers
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/06/22
Tag:Computer Science Applications; General Engineering; Modeling and Simulation; Software
DOI:https://doi.org/10.1007/s00366-023-01834-7
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für High-Performance Scientific Computing
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)