MiST: a large-scale annotated resource and neural models for functions of modal verbs in English scientific text

  • Modal verbs (e.g., can, should or must) occur highly frequently in scientific articles. Decoding their function is not straightforward: they are often used for hedging, but they may also denote abilities and restrictions. Understanding their meaning is important for accurate information extraction from scientific text.To foster research on the usage of modals in this genre, we introduce the MIST (Modals In Scientific Text) dataset, which contains 3737 modal instances in five scientific domains annotated for their semantic, pragmatic, or rhetorical function. We systematically evaluate a set of competitive neural architectures on MIST. Transfer experiments reveal that leveraging non-scientific data is of limited benefit for modeling the distinctions in MIST. Our corpus analysis provides evidence that scientific communities differ in their usage of modal verbs, yet, classifiers trained on scientific data generalize to some extent to unseen scientific domains.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sophie Henning, Nicole Macher, Stefan Grünewald, Annemarie FriedrichORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1055646
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/105564
URL:https://aclanthology.org/2022.findings-emnlp.94
Parent Title (English):Findings of the Association for Computational Linguistics: EMNLP 2022, 7-11 December 2022, Abu Dhabi, United Arab Emirates
Publisher:Association for Computational Linguistics
Place of publication:Stroudsburg, PA
Editor:Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
Type:Conference Proceeding
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2023/07/10
First Page:1305
Last Page:1324
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Sprachverstehen mit der Anwendung Digital Humanities
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)