Approaches, applications, and challenges in physiological emotion recognition — a tutorial overview

  • An automatic emotion recognition system can serve as a fundamental framework for various applications in daily life from monitoring emotional well-being to improving the quality of life through better emotion regulation. Understanding the process of emotion manifestation becomes crucial for building emotion recognition systems. An emotional experience results in changes not only in interpersonal behavior but also in physiological responses. Physiological signals are one of the most reliable means for recognizing emotions since individuals cannot consciously manipulate them for a long duration. These signals can be captured by medical-grade wearable devices, as well as commercial smart watches and smart bands. With the shift in research direction from laboratory to unrestricted daily life, commercial devices have been employed ubiquitously. However, this shift has introduced several challenges, such as low data quality, dependency on subjective self-reports, unlimited movement-relatedAn automatic emotion recognition system can serve as a fundamental framework for various applications in daily life from monitoring emotional well-being to improving the quality of life through better emotion regulation. Understanding the process of emotion manifestation becomes crucial for building emotion recognition systems. An emotional experience results in changes not only in interpersonal behavior but also in physiological responses. Physiological signals are one of the most reliable means for recognizing emotions since individuals cannot consciously manipulate them for a long duration. These signals can be captured by medical-grade wearable devices, as well as commercial smart watches and smart bands. With the shift in research direction from laboratory to unrestricted daily life, commercial devices have been employed ubiquitously. However, this shift has introduced several challenges, such as low data quality, dependency on subjective self-reports, unlimited movement-related changes, and artifacts in physiological signals. This tutorial provides an overview of practical aspects of emotion recognition, such as experiment design, properties of different physiological modalities, existing datasets, suitable machine learning algorithms for physiological data, and several applications. It aims to provide the necessary psychological and physiological backgrounds through various emotion theories and the physiological manifestation of emotions, thereby laying a foundation for emotion recognition. Finally, the tutorial discusses open research directions and possible solutions.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Yekta Said CanORCiDGND, Bhargavi Mahesh, Elisabeth AndréORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1064458
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/106445
ISSN:0018-9219OPAC
ISSN:1558-2256OPAC
Parent Title (English):Proceedings of the IEEE
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:New York, NY
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/07/27
Tag:Electrical and Electronic Engineering
Volume:111
Issue:10
First Page:1287
Last Page:1313
DOI:https://doi.org/10.1109/jproc.2023.3286445
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)