A super-localized generalized finite element method
- This paper presents a novel multi-scale method for elliptic partial differential equations with arbitrarily rough coefficients. In the spirit of numerical homogenization, the method constructs problem-adapted ansatz spaces with uniform algebraic approximation rates. Localized basis functions with the same super-exponential localization properties as the recently proposed Super-Localized Orthogonal Decomposition enable an efficient implementation. The method’s basis stability is enforced using a partition of unity approach. A natural extension to higher order is presented, resulting in higher approximation rates and enhanced localization properties. We perform a rigorous a priori and a posteriori error analysis and confirm our theoretical findings in a series of numerical experiments. In particular, we demonstrate the method’s applicability for challenging high-contrast channeled coefficients.
Author: | Philip Freese, Moritz HauckORCiDGND, Tim Keil, Daniel PeterseimORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1073071 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/107307 |
ISSN: | 0029-599XOPAC |
ISSN: | 0945-3245OPAC |
Parent Title (German): | Numerische Mathematik |
Publisher: | Springer |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2024 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/08/31 |
Volume: | 156 |
First Page: | 205 |
Last Page: | 235 |
DOI: | https://doi.org/10.1007/s00211-023-01386-4 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |