A machine learning enhanced multi-start heuristic to efficiently solve a serial-batch scheduling problem

  • Serial-batch scheduling problems are widespread in several industries (e.g., the metal processing industry or industrial 3D printing) and consist of two subproblems that must be solved simultaneously: the grouping of jobs into batches and the sequencing of the created batches. This problem’s NP-hard nature prevents optimally solving large-scale problems; therefore, heuristic solution methods are a common choice to effectively tackle the problem. One of the best-performing heuristics in the literature is the ATCS–BATCS(β) heuristic which has three control parameters. To achieve a good solution quality, most appropriate parameters must be determined a priori or within a multi-start approach. As multi-start approaches performing (full) grid searches on the parameters lack efficiency, we propose a machine learning enhanced grid search. To that, Artificial Neural Networks are used to predict the performance of the heuristic given a specific problem instance and specific heuristicSerial-batch scheduling problems are widespread in several industries (e.g., the metal processing industry or industrial 3D printing) and consist of two subproblems that must be solved simultaneously: the grouping of jobs into batches and the sequencing of the created batches. This problem’s NP-hard nature prevents optimally solving large-scale problems; therefore, heuristic solution methods are a common choice to effectively tackle the problem. One of the best-performing heuristics in the literature is the ATCS–BATCS(β) heuristic which has three control parameters. To achieve a good solution quality, most appropriate parameters must be determined a priori or within a multi-start approach. As multi-start approaches performing (full) grid searches on the parameters lack efficiency, we propose a machine learning enhanced grid search. To that, Artificial Neural Networks are used to predict the performance of the heuristic given a specific problem instance and specific heuristic parameters. Based on these predictions, we perform a grid search on a smaller set of most promising heuristic parameters. The comparison to the ATCS–BATCS(β) heuristics shows that our approach reaches a very competitive mean solution quality that is only 2.5% lower and that it is computationally much more efficient: computation times can be reduced by 89.2% on average.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Aykut UzunogluORCiDGND, Christian GahmORCiDGND, Axel TumaORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1073599
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/107359
Parent Title (English):Annals of Operations Research
Publisher:Springer
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2023/09/22
Volume:338
First Page:407
Last Page:428
DOI:https://doi.org/10.1007/s10479-023-05541-w
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Betriebswirtschaftslehre
Wirtschaftswissenschaftliche Fakultät / Institut für Betriebswirtschaftslehre / Lehrstuhl für Production & Supply Chain Management
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)