Simultaneous LC-ESI-MS/MS quantification of levosimendan and its metabolites for therapeutic drug monitoring of cardiac surgery patients

  • Levosimendan is used in severe chronic cardiac insufficiency, also within the peri-operative setting. Real-life pharmacokinetic data in surgical patients is lacking, making therapeutic drug monitoring (TDM) of levosimendan, its pharmacologically active metabolite OR-1896, and its intermediate OR-1855 important. A simultaneous highly sensitive quantification of levosimendan and its metabolites in small-volume samples has not yet been described. Here, levosimendan (LLOQ 0.450 nM), OR-1896, and OR-1855 (LLOQ both 1.0 nM) were successfully quantified by LC-ESI-MS/MS after liquid-liquid extraction in 300 µL of blood. A short C8 column under reversed-phase conditions enabled simultaneous and fast quantification of levosimendan in the negative and the metabolites in the positive ionization mode in a single run within 2 min. Interestingly and unexpectedly, constitutional isomers of levosimendan metabolites with identical mass transitions and similar retention times were observed in surgicalLevosimendan is used in severe chronic cardiac insufficiency, also within the peri-operative setting. Real-life pharmacokinetic data in surgical patients is lacking, making therapeutic drug monitoring (TDM) of levosimendan, its pharmacologically active metabolite OR-1896, and its intermediate OR-1855 important. A simultaneous highly sensitive quantification of levosimendan and its metabolites in small-volume samples has not yet been described. Here, levosimendan (LLOQ 0.450 nM), OR-1896, and OR-1855 (LLOQ both 1.0 nM) were successfully quantified by LC-ESI-MS/MS after liquid-liquid extraction in 300 µL of blood. A short C8 column under reversed-phase conditions enabled simultaneous and fast quantification of levosimendan in the negative and the metabolites in the positive ionization mode in a single run within 2 min. Interestingly and unexpectedly, constitutional isomers of levosimendan metabolites with identical mass transitions and similar retention times were observed in surgical patients’ samples, which we identified as the metamizole metabolites 4-aminoantipyrine and 4-acetamidoantipyrine. A longer C8 column and a modified mobile phase enabled selective quantification of all analytes in a single run within 7 min. We developed, validated, and applied highly sensitive LC-ESI-MS/MS methods for simultaneous quantification of levosimendan and its metabolites, enabling efficient TDM of cardiac surgery patients even with additional metamizole administration.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hannah Kipka, Roland Tomasi, Max Hübner, Uwe Liebchen, Christian Hagl, Klaus T. Wanner, Hanna MannellGND, Georg Höfner
URN:urn:nbn:de:bvb:384-opus4-1080044
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108004
ISSN:1999-4923OPAC
Parent Title (English):Pharmaceutics
Publisher:MDPI
Place of publication:Basel
Type:Article
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2023/09/25
Tag:Pharmaceutical Science
Volume:14
Issue:7
First Page:1454
DOI:https://doi.org/10.3390/pharmaceutics14071454
Institutes:Medizinische Fakultät
Medizinische Fakultät / Lehrstuhl für Physiologie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)