The robustness of the derived design life levels of heavy precipitation events in the pre-alpine Oberland region of Southern Germany

  • Extreme value analysis (EVA) is well-established to derive hydrometeorological design values for infrastructures that have to withstand extreme events. Since there is concern about increased extremes with higher hazard potential under climate change, alterations of EVA are introduced for which statistical properties are no longer assumed to be constant but vary over time. In this study, both stationary and non-stationary EVA models are used to derive design life levels (DLLs) of daily precipitation in the pre-alpine Oberland region of Southern Germany, an orographically complex region characterized by heavy precipitation events and climate change. As EVA is fraught with uncertainties, it is crucial to quantify its methodological impacts: two theoretical distributions (i.e., Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution), four different parameter estimation techniques (i.e., Maximum Likelihood Estimation (MLE), L-moments, Generalized Maximum LikelihoodExtreme value analysis (EVA) is well-established to derive hydrometeorological design values for infrastructures that have to withstand extreme events. Since there is concern about increased extremes with higher hazard potential under climate change, alterations of EVA are introduced for which statistical properties are no longer assumed to be constant but vary over time. In this study, both stationary and non-stationary EVA models are used to derive design life levels (DLLs) of daily precipitation in the pre-alpine Oberland region of Southern Germany, an orographically complex region characterized by heavy precipitation events and climate change. As EVA is fraught with uncertainties, it is crucial to quantify its methodological impacts: two theoretical distributions (i.e., Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution), four different parameter estimation techniques (i.e., Maximum Likelihood Estimation (MLE), L-moments, Generalized Maximum Likelihood Estimation (GMLE), and Bayesian estimation method) are evaluated and compared. The study reveals large methodological uncertainties. Discrepancies due to the parameter estimation methods may reach up to 45% of the mean absolute value, while differences between stationary and non-stationary models are of the same magnitude (differences in DLLs up to 40%). For the end of this century in the Oberland region, there is no robust tendency towards increased extremes found.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Patrick LauxORCiDGND, Elena Weber, David Feldmann, Harald KunstmannORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1086952
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108695
ISSN:2073-4433OPAC
Parent Title (English):Atmosphere
Publisher:MDPI AG
Type:Article
Language:English
Date of first Publication:2023/09/01
Publishing Institution:Universität Augsburg
Release Date:2023/10/26
Tag:Atmospheric Science; Environmental Science (miscellaneous)
Volume:14
Issue:9
First Page:1384
DOI:https://doi.org/10.3390/atmos14091384
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Regionales Klima und Hydrologie
Dewey Decimal Classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)