Subcortical substrates of TMS induced modulation of the cortico-cortical connectivity

  • Background Transcranial magnetic stimulation (TMS) can modulate transiently the physiological brain oscillations, e.g. the alpha rhythm. It has been hypothesized that this effect is not limited to the stimulated region but involves subcortical and distant cortical areas. Methods We applied single pulse TMS to the primary motor cortex (M1) of healthy subjects to interfere the cortical oscillatory activity recorded by simultaneous EEG and calculated the cortico-cortical coherence and power in the alpha and beta band. To study the structural substrate of the functional connectivity we performed diffusion tensor imaging and fractional anisotropy analysis (FA). To capture the pathways involved we applied probabilistic tractography to reconstruct the entire network. Results Suprathreshold TMS of M1 induced a consistent enhancement of interhemispheric cortico-cortical alpha band coherence that lasted ca. 175 ms. after the pulse has been applied. The changes were confined to theBackground Transcranial magnetic stimulation (TMS) can modulate transiently the physiological brain oscillations, e.g. the alpha rhythm. It has been hypothesized that this effect is not limited to the stimulated region but involves subcortical and distant cortical areas. Methods We applied single pulse TMS to the primary motor cortex (M1) of healthy subjects to interfere the cortical oscillatory activity recorded by simultaneous EEG and calculated the cortico-cortical coherence and power in the alpha and beta band. To study the structural substrate of the functional connectivity we performed diffusion tensor imaging and fractional anisotropy analysis (FA). To capture the pathways involved we applied probabilistic tractography to reconstruct the entire network. Results Suprathreshold TMS of M1 induced a consistent enhancement of interhemispheric cortico-cortical alpha band coherence that lasted ca. 175 ms. after the pulse has been applied. The changes were confined to the interhemispheric central EEG electrodes (i.e. C3-C4). There were no consistent changes in the beta band. Power analysis revealed a longer lasting increase in the beta band after TMS pulses. A cluster in the contralateral thalamus showed a linear relationship between regional FA and TMS induced change in alpha band coherence. Probabilistic tractography presents the transcallosal and the contralateral thalamocortical pathways as essential for the observed oscillatory synchronisation. Conclusion TMS induces an enhancement of oscillatory interaction between corresponding central regions of both hemispheres in the alpha band. The contralateral thalamus, transcallosal fibres and the contralateral thalamocortical pathways may constitute critical brain structures mediating the TMS induced change in oscillatory coupling.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sergiu Groppa, Muthuraman MuthuramanORCiDGND, Birte Otto, Günther Deuschl, Hartwig R. Siebner, Jan Raethjen
URN:urn:nbn:de:bvb:384-opus4-1103566
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110356
ISSN:1935-861XOPAC
Parent Title (English):Brain Stimulation
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2013
Publishing Institution:Universität Augsburg
Release Date:2023/12/20
Tag:Neurology (clinical); Biophysics; General Neuroscience
Volume:6
Issue:2
First Page:138
Last Page:146
DOI:https://doi.org/10.1016/j.brs.2012.03.014
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)