Randomized sparse block Kaczmarz as randomized dual block-coordinate descent

  • We show that the Sparse Kaczmarz method is a particular instanceof the coordinate gradient method applied to an unconstrained dualproblem corresponding to a regularized `1-minimization problem sub-ject to linear constraints. Based on this observation and recent the-oretical work concerning the convergence analysis and correspondingconvergence rates for the randomized block coordinate gradient descentmethod, we derive block versions and consider randomized ordering ofblocks of equations. Convergence in expectation is thus obtained as abyproduct. By smoothing the `1-objective we obtain a strongly convexdual which opens the way to various acceleration schemes.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefania PetraORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1106919
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110691
ISSN:1844-0835OPAC
Parent Title (Romanian):Analele Universitatii "Ovidius" Constanta - Seria Matematica
Publisher:Walter de Gruyter
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2015
Publishing Institution:Universität Augsburg
Release Date:2024/01/08
Volume:23
Issue:3
First Page:129
Last Page:149
DOI:https://doi.org/10.1515/auom-2015-0052
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematische Bildverarbeitung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)