Imaging coherent sources of tremor related EEG activity in patients with Parkinson's disease

  • The cortical sources of both the basic and first 'harmonic' frequency of Parkinsonian tremor are addressed in this paper. The power and coherence was estimated using the multitaper method for EEG and EMG data from 6 Parkinsonian patients with a classical rest tremor. The Dynamic Imaging of Coherent Sources (DICS) was used to find the coherent sources in the brain. Before hand this method was validated for the application to the EEG by showing in 3 normal subjects that rhythmic stimuli (1-5Hz) to the median nerve leads to almost identical coherent sources for the basic and first harmonic frequency in the contralateral sensorimotor cortex which is the biologically plausible result. In all the Parkinson patients the corticomuscular coherence was also present in the basic and the first harmonic frequency of the tremor. However, the source for the basic frequency was close to the frontal midline and the first harmonic frequency was in the region of premotor and sensory motor cortex on theThe cortical sources of both the basic and first 'harmonic' frequency of Parkinsonian tremor are addressed in this paper. The power and coherence was estimated using the multitaper method for EEG and EMG data from 6 Parkinsonian patients with a classical rest tremor. The Dynamic Imaging of Coherent Sources (DICS) was used to find the coherent sources in the brain. Before hand this method was validated for the application to the EEG by showing in 3 normal subjects that rhythmic stimuli (1-5Hz) to the median nerve leads to almost identical coherent sources for the basic and first harmonic frequency in the contralateral sensorimotor cortex which is the biologically plausible result. In all the Parkinson patients the corticomuscular coherence was also present in the basic and the first harmonic frequency of the tremor. However, the source for the basic frequency was close to the frontal midline and the first harmonic frequency was in the region of premotor and sensory motor cortex on the contralateral side for all the patients. Thus the generation of these two oscillations involves different cortical areas and possibly follows different pathways to the periphery.show moreshow less

Download full text files

  • 110698.pdfeng
    (113KB)

    Postprint. © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Muthuraman MuthuramanORCiDGND, Jan Raethjen, H. Hellriegel, Günther Deuschl, U. Heute
URN:urn:nbn:de:bvb:384-opus4-1106987
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110698
ISBN:978-1-4244-1814-5OPAC
Parent Title (English):2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20-25 August 2008, Vancouver, BC, Canada
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Guy Dumont, Henrietta Galiana, Paolo Vicini, Jose Principe
Type:Conference Proceeding
Language:English
Year of first Publication:2008
Publishing Institution:Universität Augsburg
Release Date:2024/01/08
First Page:4716
Last Page:4719
DOI:https://doi.org/10.1109/iembs.2008.4650266
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht