Aromas: lovely to smell and nice solvents for polyphenols? Curcumin solubilisation power of fragrances and flavours

  • Natural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV–Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donorNatural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV–Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donor abilities, like γ- and δ-lactones. The special case of DMSO was also examined, as the highest curcumin solubility was observed with it. Possible specific interactions of selected aroma compounds (citral and δ-hexalactone) with curcumin were investigated via 1H NMR and NOESY experiments. The tested flavours and fragrances were evaluated regarding their potential as green alternative solvents.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael SchmidtGND, Verena Huber, Didier Touraud, Werner Kunz
URN:urn:nbn:de:bvb:384-opus4-1114317
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/111431
ISSN:1420-3049OPAC
Parent Title (English):Molecules
Publisher:MDPI AG
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/02/20
Tag:Chemistry (miscellaneous); Analytical Chemistry; Organic Chemistry; Physical and Theoretical Chemistry; Molecular Medicine; Drug Discovery; Pharmaceutical Science
Volume:29
Issue:2
First Page:294
DOI:https://doi.org/10.3390/molecules29020294
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Professur für Chemie der Materialien und der Ressourcen
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Lehrstuhl für Resource and Chemical Engineering
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)