Monte Carlo simulation study of a selforganisation process leading to ordered precipitate structures

  • Periodically arranged, selforganised, nanometric, amorphous precipitates have been observed after high-fluence ion implantations into solids for a number of ion/target combinations at certain implantation conditions. A model describing the ordering process based on compressive stress exerted by the amorphous inclusions as a result of the density change upon amorphisation is introduced. A Monte Carlo simulation code, which focuses on high-fluence carbon implantations into silicon, is able to reproduce experimentally observed nanolamella distributions as well as the formation of continuous amorphous layers. By means of simulation, the selforganisation process becomes traceable and detailed information about the compositional and structural state during the ordering process is obtained. Based on simulation results, a recipe is proposed for producing broad distributions of ordered lamellar structures.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frank Zirkelbach, Maik HäberlenGND, Jörg K. N. Lindner, Bernd StritzkerGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112292
ISSN:0168-583XOPAC
Parent Title (English):Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2007
Release Date:2024/04/05
Tag:Instrumentation; Nuclear and High Energy Physics
Volume:257
Issue:1-2
First Page:75
Last Page:79
DOI:https://doi.org/10.1016/j.nimb.2006.12.118
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik IV
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik