Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model

  • Background Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. Methods The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. Results From the 29 topics identified, we identified 6 risk topics for depression: ‘NoBackground Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. Methods The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. Results From the 29 topics identified, we identified 6 risk topics for depression: ‘No Expectations’, ‘Sleep’, ‘Mental Therapy’, ‘Haircut’, ‘Studying’, and ‘Coursework’. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. Limitations Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. Conclusion This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Yuezhou Zhang, Amos A. Folarin, Judith DineleyORCiD, Pauline Conde, Valeria de Angel, Shaoxiong Sun, Yatharth Ranjan, Zulqarnain Rashid, Callum Stewart, Petroula Laiou, Heet Sankesara, Linglong Qian, Faith Matcham, Katie White, Carolin Oetzmann, Femke Lamers, Sara Siddi, Sara Simblett, Björn W. SchullerORCiDGND, Srinivasan Vairavan, Til Wykes, Josep Maria Haro, Brenda W. J. H. Penninx, Vaibhav A. Narayan, Matthew Hotopf, Richard J. B. Dobson, Nicholas CumminsORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1124650
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112465
ISSN:0165-0327OPAC
Parent Title (English):Journal of Affective Disorders
Publisher:Elsevier BV
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/04/08
Tag:Psychiatry and Mental health; Clinical Psychology
Volume:355
First Page:40
Last Page:49
DOI:https://doi.org/10.1016/j.jad.2024.03.106
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)