Summary of the DREAM8 parameter estimation challenge: toward parameter identification for whole-cell models

  • Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe thatWhole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jonathan R. Karr, Alex H. Williams, Jeremy D. Zucker, Andreas RaueORCiDGND, Bernhard Steiert, Jens Timmer, Clemens Kreutz, Simon Wilkinson, Brandon A. Allgood, Brian M. Bot, Bruce R. Hoff, Michael R. Kellen, Markus W. Covert, Gustavo A. Stolovitzky, Pablo Meyer
URN:urn:nbn:de:bvb:384-opus4-1132159
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113215
ISSN:1553-7358OPAC
Parent Title (English):PLoS Computational Biology
Publisher:Public Library of Science (PLoS)
Place of publication:San Francisco, CA
Type:Article
Language:English
Year of first Publication:2015
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:11
Issue:5
First Page:e1004096
DOI:https://doi.org/10.1371/journal.pcbi.1004096
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Modellierung und Simulation biologischer Prozesse
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)