Modeling recovery rates of small- and medium-sized entities in the US

  • A sound statistical model for recovery rates is required for various applications in quantitative risk management, with the computation of capital requirements for loan portfolios as one important example. We compare different models for predicting the recovery rate on borrower level including linear and quantile regressions, decision trees, neural networks, and mixture regression models. We fit and apply these models on the worldwide largest loss and recovery data set for commercial loans provided by GCD, where we focus on small- and medium-sized entities in the US. Additionally, we include macroeconomic information via a predictive Crisis Indicator or Crisis Probability indicating whether economic downturn scenarios are expected within the time of resolution. The horserace is won by the mixture regression model which regresses the densities as well as the probabilities that an observation belongs to a certain component.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Aleksey Min, Matthias Scherer, Amelie SchischkeGND, Rudi Zagst
URN:urn:nbn:de:bvb:384-opus4-1166758
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/116675
ISSN:2227-7390OPAC
Parent Title (English):Mathematics
Publisher:MDPI AG
Place of publication:Basel
Type:Article
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2024/11/18
Volume:8
Issue:11
First Page:1856
DOI:https://doi.org/10.3390/math8111856
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Professur für Applied Data Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)