Understanding the effects of removing common blocks on Approximate Matching scores under different scenarios for digital forensic investigations

  • Finding similarity in digital forensics investigations can be assisted with the use of Approximate Matching (AM) functions. These algorithms create small and compact representations of objects (similar to hashes) which can be compared to identify similarity. However, often results are biased due to common blocks (data structures found in many different files regardless of content). In this paper, we evaluate the precision and recall metrics for AM functions when removing common blocks. In detail, we analyze how the similarity score changes and impacts different investigation scenarios. Results show that many irrelevant matches can be filtered out and that a new interpretation of the score allows a better similarity detection.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Vitor Hugo Galhador Moia, Frank BreitingerORCiDGND, Marco Aurélio Amaral Henriques
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117815
Parent Title (Portuguese):2019: Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019), 2-5 setembro 2019, São Paulo, SP
Publisher:Sociedade Brasileira de Computação – SBC
Place of publication:Porto Alegre
Type:Conference Proceeding
Language:English
Year of first Publication:2019
Release Date:2025/01/07
First Page:113
Last Page:126
DOI:https://doi.org/10.5753/sbseg.2019.13966
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Cybersicherheit